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Approximations to the scattering of linear surface gravity waves on water of varying
quiescent depth are investigated by means of a variational approach. Previous authors
have used wave modes associated with the constant depth case to approximate the
velocity potential, leading to a system of coupled differential equations. Here it is
shown that a transformation of the dependent variables results in a much simplified
differential equation system which in turn leads to a new multi-mode ‘mild-slope’
approximation. Further, the effect of adding a bed mode is examined and clarified.
A systematic analytic method is presented for evaluating inner products that arise
and numerical experiments for two-dimensional scattering are used to examine the
performance of the new approximations.

1. Introduction
The purpose of this paper is to extend the investigation carried out by Porter (2003)

for the mild-slope equation to a multi-mode approximation of surface gravity wave
scattering by topography. The aim is to derive a system of relatively simple differential
equations that can produce the solution of the full linear scattering problem arbitrarily
closely.

The mild-slope equation of Berkhoff (1972, 1976) and Smith & Sprinks (1975)
and the related extended mild-slope equation (Kirby 1986) and modified mild-slope
equation (Chamberlain & Porter 1995) have been well documented. For example,
Porter (2003) refers to other derivations and Athanassoulis & Belibassakis (1999)
provide a comprehensive survey, including multi-mode approximations that concern
us here. The essential point is that the mild-slope equation and its variants arise
from approximating surface wave motions over topography by a single term in
which the vertical coordinate arises only in a known eigenfunction that corresponds
to propagating waves in water of constant depth. Vertical integration, essentially an
application of Galerkin’s method, or the use of a variational principle then removes the
vertical coordinate completely and the dimension of the problem is thereby reduced.
This simplification has been widely exploited in a range of problems, including wave
trapping and near-trapping (Chamberlain & Porter 1996, 1999) and scattering by
doubly modulated topography (Porter & Porter 2000).

However, the drawback in using the mild-slope approximation is that its accuracy
is not known. The results obtained are likely to be reasonably good approximations if
the topography is slowly varying, but even in this case the derivation does not lead to
an error term that can be estimated. To obtain more reliable quantitative information,
further terms must be included in the approximation. The natural extension to the
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basic single-term mild-slope approximation is to combine it with additional terms
containing eigenfunctions corresponding to a number of evanescent modes. This
idea was implemented by Massel (1993) using Galerkin’s method and by Porter &
Staziker (1995), who invoked a variational principle. It was shown that, by including
N additional terms and increasing N until a desired accuracy has been reached, the
solution of the unapproximated problem is obtained, to that accuracy. The removal of
the vertical coordinate again simplifies the problem when the extended ‘multi-mode’
approximation is used but the modified mild-slope equation is replaced by N + 1
coupled partial differential equations in the horizontal variables. Porter & Staziker
(1995) also drew attention to the fact that discontinuities in the bed slope have
a significant effect on the predicted wave heights, which had previously not been
accounted for even in the mild-slope model.

Two further developments form the background to the present paper.
Athanassoulis & Belibassakis (1999) showed that the multi-mode approach used
by Massel (1993) and Porter & Staziker (1995) is flawed in the sense that a pointwise
representation of the exact solution in the whole flow domain cannot be obtained in
the limit N → ∞ in which all of the eigenfunctions corresponding to evanescent modes
are included. This limitation arises because the approximation cannot satisfy the exact
bed condition as it is formed from eigenfunctions that do not, and as a result the
approximation to the fluid flow near the bed will converge slowly. Athanassoulis &
Belibassakis (1999) showed that the addition of a ‘sloping-bottom’ mode to the natural
eigenfunction expansion set overcomes this deficiency and, inevitably, improves the
convergence rate of the approximation. In practical terms, a smaller value of N

is required to obtain a given accuracy when the extra sloping-bottom mode is
included.

The second point to be made is that in a reappraisal of the basic one-term
approximation, Porter (2003) showed that the introduction of a particular scaling
both simplifies the modified mild-slope equation and removes the effect of bed slope
discontinuities that are implicit in the established form. Further, a new version of the
mild-slope equation emerged, simpler than that originally derived and yet containing
all of the improvements provided by the more complicated modified mild-slope
equation. Chamberlain & Porter (2005) have extended this approach to a two-layer
fluid over uneven beds and obtained corresponding simplifications. We pursue the
approach here and extend it to the case of multi-mode approximations for a single
fluid, which we thereby are able to simplify. We also examine the effect of including
a sloping-bottom, or bed, mode, but use this in a different way to Athanassoulis &
Belibassakis (1999).

The plan of the paper is as follows. Section 2 comprises a formulation of the
problem including a brief account of the corresponding variational approximation.
In the following section, it is shown that the differential equation system that results
from the standard approach can be simplified by means of a transformation, which
is first applied to the natural-wave-mode approximating set; a bed slope term is
then added. The significance of the transformation and of the bed mode is explored
numerically in § 4, for which purpose we consider a class of scattering problems
in two dimensions. This allows us to implement standard test problems used by
previous authors. It also provides a definitive estimate of error for we may use results
obtained by the method derived in Porter & Porter (2000), which solves the full
linear problem to any accuracy. That method, which appears to obviate the need for
approximation models, was developed to benchmark approximation methods rather
than as a practical solution technique; it deals only with two-dimensional problems
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and is significantly less convenient to use than the approach described in the present
paper, which applies in the three-dimensional case.

2. Formulation
Cartesian coordinates are used with the x and y axes lying in the mean free surface

z = 0, where z is directed vertically upwards. The bed is at z = −h, h(x, y) being a
given continuous function with piecewise continuous first derivatives.

The usual assumptions of linearized theory and the removal of the harmonic time
dependence exp(−iσ t) lead to equations for the time-independent velocity potential
φ(x, y, z) in the form

∇2φ = 0 (−h < z < 0),

φz − Kφ = 0 (z = 0),

φz + ∇hh · ∇φ = 0 (z = −h),

⎫⎪⎬⎪⎭ (2.1)

where K = σ 2/g and ∇h = (∂/∂x, ∂/∂y, 0); g is acceleration due to gravity. Radiation
conditions to be applied as x2 + y2 → ∞ are required to complete the specification
of φ, but our immediate concern is with the set of equations (2.1). We note that the
free-surface elevation is recovered from φ by

ζ (x, y, t) = Re{η(x, y)e−iσ t}, η(x, y) = −iσ [φ]z=0/g.

We follow Porter & Staziker (1995) by using a variational principle to generate
approximations to the solution of (2.1). Here we take the real-valued functional

L(ϕ) =

∫ ∫
D

Ldx dy, 2L(ϕ, ∇ϕ) = K[|ϕ|2]z=0 −
∫ 0

−h

∇ϕ · ∇ϕ dz,

where D denotes a simply connected domain in the plane z = 0 with boundary C. A
bar is used to denote complex conjugation. The significance of this choice is that ρL,
where ρ denotes the constant fluid density, is the difference between the potential
energy and the kinetic energy of the vertical filament of fluid at (x, y), averaged over
a period 2π/σ . L is therefore proportional to the time-averaged Lagrangian density
of the motion.

A straightforward calculation gives

δL = 2Re

{∫ ∫
D

{[δϕ (Kϕ − ϕz)]z=0 + [δϕ (ϕz + ∇hh · ∇ϕ)]z=−h

+

∫ 0

−h

δϕ ∇2ϕ dz} dx dy −
∫

C

∫ 0

−h

δϕ nc · ∇hϕ dz dc

}
, (2.2)

where nc is the outward unit normal on C. Since our first objective is to approximate
the dependence of φ on z, we may consider variations δϕ that vanish on the lateral
boundary C × [−h, 0]; the radiation conditions will be reinstated for the approximate
solution later. It follows from (2.2) that L is stationary at ϕ = φ if, and only if, φ

satisfies the conditions (2.1). Thus we can select a function ϕ of a particular form to
approximate φ and optimize this approximation by enforcing δL = 0.

In particular, we can choose ϕ so as to remove the coordinate z from the resulting
approximation to the boundary-value problem. To achieve this we set

φ ≈ ϕ =

N∑
n=M

φn(x, y)Zn(h(x, y), z), (2.3)
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in which the real-valued functions ZM, . . . , ZN are assumed to be given. We take
N � 0 and M = −1 or M = 0; the reason for this notation will become clear shortly.
We suppose that each Zn satisfies the free-surface condition Z′

n − KZn = 0 on z = 0,
where the dash denotes differentiation with respect to z, but otherwise we do not
specify the expansion set at this stage.

To express the result of this approximation process concisely, it is convenient to
use the inner product notation

(u, v) =

∫ 0

−h

u(z)v(z) dz, (u, u) = ||u||2,

and a dot to denote differentiation with respect to h; thus
�

Zn = ∂Zn/∂h, for example.
The effect of substituting the expression (2.3) for ϕ into L and imposing the

stationary condition δL = 0 can be deduced by using (2.2). After some manipulation,
we find that the functions φn must satisfy the coupled system of equations

N∑
n=M

{
∇h · (Zn, Zm)∇hφn + {(Zm,

�

Zn) − (Zn,
�

Zm)}∇hh · ∇hφn + {(Zm, Z′′
n)

+ [ZmZ′
n]z=−h + (Zm,

�

Zn)∇2
hh + ((Zm,

�

Zn)
� − (

�

Zm,
�

Zn))(∇hh)2}φn

}
= 0, (2.4)

holding for m = M, . . . , N . The approximation ϕ ≈ φ is therefore determined by
solving this system for φM, . . . , φN , subject to appropriate radiation conditions.

However, the system applies only where h is differentiable. If we suppose that ∇hh

is discontinuous on a curve whose projection onto z = 0 is denoted by Γ , then it is
easy to deduce from (2.4) that the term ∇2

hh induces the set of jump conditions

N∑
n=M

{
(Zm, Zn)〈nΓ · ∇hφn〉 + (Zm,

�

Zn)〈nΓ · ∇hh〉φn

}
= 0, (2.5)

for m = M, . . . , N . Here we have used 〈 . 〉 to denote the jump in the included quantity
across Γ and nΓ is the normal to Γ defined in a consistent way. Thus, if h has a
discontinuous slope at one or more locations in the given domain, (2.4) must be solved
on subdomains, and the piecewise solutions related through (2.5). Porter & Staziker
(1995) obtained the equivalent set of conditions to (2.5) directly from an amended
form of a variational principle, and showed that it corresponds to conservation of
mass. The same procedure can be carried out in the present formulation.

The simplest approximation of the type under consideration corresponds to M =
N = 0 and

Z0(h, z) = sech(kh) cosh k(z + h), (2.6)

where the wavenumber k = k(x, y) is the positive real root of the dispersion relation

K = k tanh(kh) (2.7)

with h = h(x, y), the frequency parameter K being assumed fixed. In this case, (2.4)
reduces to the modified mild-slope equation derived by Chamberlain & Porter (1995).

The natural extension to a higher-order approximation, introduced by Massel (1993)
and Porter & Staziker (1995) supplements Z0 with

Zn(h, z) = sec(knh) cos kn(z + h) (n = 1, . . . , N). (2.8)
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Here, kn denote the positive roots of

kn tan(knh) = −K, (2.9)

arranged so that k1 < k2 < . . . . It is convenient to write k0 = −ik, to subsume Z0 into
the definition (2.8). In the limit N → ∞, Z0, Z1, . . . is the complete orthogonal set of
vertical eigenfunctions obtained by separating the variables in (2.1) for a horizontal
bed; Z0 corresponds to a propagating mode and Zn for n � 1 to evanescent modes.

However, as remarked in § 1, Athanassoulis & Belibassakis (1999) noted that the
exact solution φ(x, y, z) cannot be represented pointwise as an expansion in the
complete set Zn (n = 0, 1, . . .) for −h � z � 0; this expansion will not converge
to a function φ satisfying the bed condition at z = −h because Z′

n = 0 there, for
every n = 0, 1, . . . . Although we are considering only a truncated expansion set here
and can choose it however we wish, this observation is nevertheless significant in the
approximation context for, as Athanassoulis & Belibassakis showed, the convergence
rate is improved by extending the expansion set to include a term Z−1 such that
Z′

−1 	= 0 at z = −h. (Clearly, M = −1 has been incorporated in the formulation
to include a sloping-bottom mode.) This is an example of the general property of
variational approximations, that the dimension of the expansion set will be reduced
the more closely the set models the properties of the exact solution. Athanassoulis &
Belibassakis (1999) extended the set Zn (n = 0, 1, . . . , N) by additional function

Z−1(h, z) = h{(z/h)3 + (z/h)2}, (2.10)

which satisfies the free-surface condition and is such that Z′
−1 = 1 on z = −h. They

reported, however, that different choices of Z−1 having these properties lead to the
same numerical results.

3. A transformation
One contribution of the present work is the derivation of a new multi-mode

approximation based on the existing framework derived above. As noted in § 1 this
approach is motivated by a reappraisal of the modified mild-slope equation by Porter
(2003), which resulted in a more transparent and concise version of the equation.
Here, we seek to simplify the system (2.3) in a corresponding way.

This is achieved by seeking a different expansion set to that used in (2.3). More
precisely, we express (2.3) in a different form by retaining the notionally prescribed
functions Zn and introducing a new set WM (h, z), . . . , WN (h, z) defined in terms of
ZM, . . . , ZN .

To implement the process concisely, we first note that the approximation (2.3) may
be written as

φ ≈ ϕ = ΦT Z, Φ = (φM, . . . , φN )T , Z = (ZM, . . . , ZN )T . (3.1)

If we now introduce the transformation

Φ = S(h)Ψ , W = ST (h)Z, Ψ = (ψM, . . . , ψN )T , W = (WM, . . . , WN )T , (3.2)

in which the non-singular (N − M +1) × (N − M +1) matrix S(h) is to be determined,
the approximation takes the form

φ ≈ ϕ =

N∑
n=M

ψn(x, y)Wn(h(x, y), z). (3.3)
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Noting that the property W ′
n − KWn = 0 on z = 0 is inherited from Zn through

(3.2), the use of (3.3) in the variational principle δL = 0 obviously results in a system
of the form (2.4) with φn replaced by ψn and Zn by Wn. Thus

N∑
n=M

{
∇h · (Wn, Wm)∇hψn + {(Wm,

�

Wn) − (Wn,
�

Wm)}∇hh · ∇hψn + {(Wm, W ′′
n )

+ [WmW ′
n]z=−h + (Wm,

�

Wn)∇2
hh + ((Wm,

�

Wn)
� − (

�

Wm,
�

Wn))(∇hh)2}ψn

}
= 0. (3.4)

At this stage, we can choose S = S(h) to be any invertible matrix, but we will restrict
our attention to those transformations which remove the term involving ∇2

hh. We
therefore require that

(Wm,
�

Wn) = 0, (m, n = M, . . . , N ). (3.5)

It follows that (3.4) simplifies to

N∑
n=M

{
∇h · Amn∇hψn + {Bmn − Cmn(∇hh)2}ψn

}
= 0, (3.6)

for m = M, . . . , N , in which

Amn = (Wm, Wn), Bmn = (Wm, W ′′
n ) + [WmW ′

n]z=−h, Cmn = (
�

Wm,
�

Wn).

The approximation (3.3) is completed by solving for WM, . . . , WN , that is, by
determining the transformation matrix S(h). Now (3.2) implies that

W
�

W
T

= ST (Z
�

Z
T
S + ZZT

�

S),

the matrix on the left-hand side having m − M + 1, n − M + 1 component Wm

�

Wn

(m, n = M, . . . , N ). Integrating with respect to z from −h to 0 and enforcing (3.5),
we deduce that S must satisfy

A
�

S + DS = 0, Amn = (Zm, Zn), Dmn = (Zm,
�

Zn), (3.7)

A and D being (N − M + 1) × (N − M + 1) matrices.
The obvious advantages of the system (3.6) over (2.4) are its relative simplicity and

the continuity of the functions ∇ψn, even where ∇hh is discontinuous, this property
following from the absence of a term in ∇2

hh. We note that the original approximation
has not been changed, it has merely been reformulated. Thus, the jump conditions
(2.5), which are inherent in the basic approximation, still hold, as can be confirmed
using (3.2) and (3.7).

We may express the coefficients in (3.6) in terms of the functions Zn, thereby
eliminating Wn from the calculation altogether. Thus, for example, (3.2) and (3.7)

imply that
�

W = ST (
�

Z − (A−1D)T Z) and therefore

�

W
�

W
T

=
�

S
T {

�

Z
�

Z
T

−
�

ZZT (A−1D) − (A−1D)T Z
�

Z
T

+ (A−1D)T ZZT (A−1D)}S.

Integrating with respect to z from −h to 0, we find that

C = ST {C − DT (A−1D) − (A−1D)T D + (A−1D)T A(A−1D)}S
= ST {C − DT A−1D}S,

where

Cmn = (
�

Zm,
�

Zn).
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Combining this with two similar but more straightforward manipulations, we find
the matrices A, B and C with m − M + 1, n − M + 1 components Amn, Bmn and Cmn,
respectively, can be written in the forms

A = A(h) = ST AS, B = B(h) = ST BS, C = C(h) = ST {C − DT A−1D}S, (3.8)

in which

Bmn = (Zm, Z′′
n) + [ZmZ′

n]z=−h (3.9)

has not previously been defined. We have tacitly assumed that the functions Zn are
chosen so that A is non-singular.

The final form of the approximation is therefore

φ ≈ Ψ T ST (h)Z, (3.10)

in which

∇h · A(h)∇hΨ + {B(h) − C(h)(∇hh)2}Ψ = 0 (3.11)

determines Ψ and S is given by solving (3.7) subject to an initial condition of the
form S(h̃) = S̃, where h̃ is a fixed reference depth.

We now comment on the cost involved in implementing the change of dependent
variable implied by (3.2). The principal cost will be incurred in approximating a
solution S = S(h) to (3.7), but it should be noted that, for given M and N , the matrix
S is a function only of Kh. S does not depend on the particular bed shape under
consideration and it can be calculated and stored for a range of Kh in advance of
the choice of topography h or the angular frequency σ .

The system of equations (3.11) has arisen from the change of dependent variables
(3.2) and approximations to wave motion found via (3.11) will be the same as those
found by Porter & Staziker (1995), assuming that the same functions Zn are used.
Some of the advantages of (3.11) over previous contributions will be discussed in
what follows, but here we note one new opportunity. The classical mild-slope equation
involves, in its derivation, the neglect of terms involving (∇hh)2 and ∇2

hh, and a great
deal of work has been done (for example by Kirby 1986; Massel 1993; Chamberlain &
Porter 1995; Porter & Staziker 1995) in attempts to improve the approximation in
cases where it produces unsatisfactory results. It is now understood that all of the
deficiencies of the mild-slope equation in respect of mass-conservation and resonance
by ripple beds are due to the neglect of the term in ∇2

hh. Porter (2003) has derived
a new mild-slope equation (given explicitly here in equation (3.21)) which does not
neglect ∇2

hh, and this equation has been shown to avoid the problems inherent in the
classical mild-slope equation. The corresponding absence of ∇2

hh in (3.11) suggests
that we also may neglect the term with (∇hh)2 in equation (3.11) so that we obtain
the mild-slope approximation

∇h · A(h)∇hΨ + B(h)Ψ = 0 (3.12)

without losing mass conservation and one of the principal aims of this paper is
to explore the validity of this new approximation which we do later by means of
numerical experiments. We note here a useful consequence of removing (∇hh)2, that
(3.12) applies everywhere and not just on subdomains where ∇hh is continuous.

3.1. Scale invariance property

We recall that the functions Zn are required to be real-valued and satisfy Z′
n−KZn = 0

on z = 0, but are otherwise arbitrary. One property of the matrices A, B and C in
(3.11) is that they are unchanged if Zn is replaced by en(h)Zn, where eM (h), . . . , eN (h)
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are real-valued and non-zero. To show this, suppose that we use the circumflex accent
to denote quantities occurring in (3.11) evaluated using Ẑn = en(h)Zn in place of Zn

and let E = diag(eM, . . . , eN ). It can easily be verified that

Â = EAE, B̂ = EBE, Ĉ = ECE +
�

EDE +EDT
�

E +
�

EAE, D̂ = EDE +EA
�

E.

On using (3.7), it now follows that ÂŜ
�

+ D̂Ŝ = 0, implying Ŝ = E−1S, and therefore

Â = ŜT ÂŜ = ST AS = A. Similarly B̂ = B and, after some algebra, Ĉ = C.
The practical advantage of this scale invariance property is that it avoids the need

to normalize Zn in any way and this simplifies the evaluation of the coefficients in
(3.11). In contrast, the original version (2.4) of the system is sensitive to the way in
which the members of the expansion set are scaled. In fact it can easily be shown that
the coefficients in (2.4) have the scale invariance property only if the term in ∇2

hh is
absent. In other words, we could have deduced (3.11) by seeking the scale invariant
form of (2.4).

3.2. Wave mode approximation

Here we take M = 0 and use the functions Z0, Z1, . . . , ZN defined by (2.6) and (2.8).
However, the scale invariance property allows us to drop the factors sech(kh) and
sec(knh) and use the simpler

Zn(h, z) = cos kn(z + h) (n = 0, . . . , N), (3.13)

in which k0 = −ik. This reduction in the dependence of Zn on h, explicitly and
through kn(h), means that

�

Zn is significantly simplified and the evaluation of the
terms Cmn and Dmn correspondingly more straightforward.

As noted earlier, the functions Zn are orthogonal at each value of h, and we easily
find using (3.7) and (3.9) that

Amn = (4kn)
−1{2knh + sin(2knh)}δmn, Bmn = −k2

nAnnδmn, (3.14)

for m, n = 0, . . . , N , where δmn is the Kronecker delta. The other inner products
required to form the coefficients in (3.11), and relationships between them, are
determined in the Appendix using a method that avoids laborious integrations.
In particular, it is shown there that

kn

�

Ann = 2knDnn − 2
�

knAnn (n = 0, . . . , N),

which can be rearranged as (knA1/2
nn )

�

= knA−1/2
nn Dnn, implying the matrix identity

(KA1/2)
�

= KA−1/2D̃, K = diag(k, k1, . . . , kN ), D̃ = diag(D00, . . . , DNN ).

(We note that the square root of a diagonal matrix is found by taking the square root
of each element.) This establishes an integrating factor for the diagonal elements of
A and D in (3.7), for the latter may be written as

KA1/2
�

S + (KA1/2)
�

S + KA−1/2(D − D̃)S = 0

and therefore
�

P + EP = 0, P = KA1/2S. (3.15)

Here E = KA−1/2(D − D̃)A−1/2K−1 is a real-valued matrix with diagonal elements
equal to zero. Its off-diagonal elements may be deduced by referring to (3.14) and
(A 4) and are

En0 = E0n = −4(kkn)
3/2/

{
u0un

(
k2 + k2

n

)}
(n = 1, . . . , N),

Emn = −Enm = 4(kmkn)
3/2/

{
unum

(
k2

m − k2
n

)}
(m, n = 1, . . . , N),

}
(3.16)
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in which

u0 = {2kh + sinh(2kh)}1/2, un = {2knh + sin(2knh)}1/2 (n = 1, . . . , N).

The transformation to (3.15) is an immediate simplification of (3.7) for N = 0 and
it determines S in that case since the scalar P must be a constant. The extension
of the transformation to general N has been arranged so that all quantities remain
real-valued. One consequence of this is the relationship

IET I = −E, I = diag(1, −1, . . . , −1), (3.17)

where the matrix I arises as a result of including both propagating and evanescent
modes within a single real-valued framework.

It follows from (3.15) and (3.17) that
�

P
T IP + P T I

�

P = 0 and therefore that
P T IP is a constant matrix. By introducing the initial condition P (h̃) = I , where h̃ is
a reference depth, the scaling matrix is given by

S = A−1/2K−1P, P T IP = I. (3.18)

This structure has immediate consequences for (3.11). Referring to (3.8) and noting
that B = IK2A by (3.14) we readily find that

A = P T K−2P, B = I,

which reveals the benefit of the transformation (3.15) for general N .
Applying the transformation (3.15) to the matrix C occurring in (3.11), we obtain

C = P T GP, G = K−1A−1/2{C − DT A−1D}A−1/2K−1.

The components of G can be evaluated by using the expressions given in the Appendix,
noting in particular that

{C − DT A−1D}mn = Cmn −
N∑

p=0

A−1
pp DpmDpn (m, n = 0, . . . , N).

There is, however, an alternative version of G that is revealing. To derive this, we
use the set Z0, Z1, . . . to form the expansion

�

Zm =

∞∑
p=0

(Zp,
�

Zm)||Zp||−2Zp,

which converges for −h < z � 0. Therefore

Cmn = (
�

Zm,
�

Zn) =

∞∑
p=0

(Zp,
�

Zm)(Zp,
�

Zn)||Zp||−2 (m, n = 0, . . . , N)

and referring to the notation (3.7), we see that

{C − DT A−1D}mn =

∞∑
p=N+1

(Zp,
�

Zm)(Zp,
�

Zn)||Zp||−2 (m, n = 0, . . . , N),

showing that C plays the part of an ‘error term’ in that it incorporates the modes that
are omitted from the approximating set. Extending the notation (3.16) to m, n ∈ �,
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we arrive at the compact expression

Gmn =

∞∑
p=N+1

k−2
p EpmEpn (m, n = 0, . . . , N).

The final form of (3.11) resulting from the present choice of the approximating
functions is

∇h · P T K−2P ∇hΨ + {I − P T GP (∇hh)2}Ψ = 0 (3.19)

and, neglecting second-order terms in the bed slope, this may be approximated by

∇h · P T K−2P ∇hΨ + I Ψ = 0, (3.20)

which is the current counterpart of (3.12). The equations (3.19) and (3.20) are,
respectively, the extensions to the multimode case of the equations derived in Porter
(2003) and, in particular, the latter is the counterpart of the new mild-slope equation

∇h · k−2∇hψ0 + ψ0 = 0, (3.21)

derived in the earlier work. The role of the matrix P in coupling the propagating
and evanescent modes ψn in the approximation (3.10) is clearly evident in (3.20). A
justification for discarding the bed slope terms to obtain (3.20) will be given on the
basis of numerical evidence later.

If h is constant, so are P , S, K and A and we may use (3.2) and (3.18) to recover

∇2
hΦ + K2I Φ = 0, Φ = SΨ

from (3.11) and (3.20). Thus the functions in the approximation (2.3) satisfy the
uncoupled equations

∇2
hφ0 + k2φ0 = 0, ∇2

hφn − k2
nφn = 0 (n = 1, . . . , N), (3.22)

as expected.

3.3. Coupled wave and bed mode approximation

Here we modify the expansion set in accordance with the observation made by
Athanassoulis & Belibassakis (1999) that the functions Wn in terms of which the
approximation (3.3) is expressed satisfy the horizontal bed condition W ′

n = 0 on
z = −h. This is the case even though the functions defined in (3.13) satisfy the exact
bed condition Z′

n + ∇hh · ∇Zn = 0 on z = −h (since all derivatives of Z0, . . . , ZN

vanish on z = −h). We therefore extend the set (3.13) to include a ‘sloping-bottom’
mode Z−1 such that Z′

−1 	= 0 on z = −h.
Suppose then that we choose a real-valued function b(h, z) having the properties

b′(h, 0) − Kb(h, 0) = 0 and b′(h, −h) 	= 0. We need to absorb the new mode into the
notation that we have established and thus set M = −1 and define

Z−1(h, z) = b(h, z) −
N∑

n=0

bnZn(h, z) (−h � z � 0), bn = A−1
nn (b, Zn), (3.23)

which satisfies the free-surface condition Z′
−1 − KZ−1 = 0 on z = 0, as our theory

requires, and preserves the orthogonality of the expansion set. We therefore use the
set Z−1, . . . , ZN , where Z0, . . . , ZN are defined by (3.13) and Z−1 refers to the bed
mode in the form (3.23). We note that the members of the resulting set W−1, . . . , WN

are such that, in general, W ′
n 	= 0 on z = −h, through the transformation (3.2).
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The scale invariance property described earlier implies that the system (3.11) arising
in the present application is insensitive to multiplication of b by any non-vanishing
function of h. It is easily shown that

(b, Zn) = −k−2
n b′(h, −h) + O

(
k−3

n

)
,

for n = 1, . . . , N and that knh = nπ + O(n−1) for sufficiently large n and therefore
(b, Zn) ∼ n−2 for large n, whatever b.

The matrices A, B, C and D now have dimension (N + 2) × (N + 2), the elements
Amn, Bmn, Cmn and Dmn being unchanged from those given in the previous section
for m, n = 0, . . . , N . Only the new components corresponding to m = −1 and n = −1
have to be evaluated.

The choice (3.23) has some useful properties. Obviously, it ensures that the matrix
A remains diagonal, the new component being

A−1,−1 = ||b||2 −
N∑

n=0

A−1
nn (b, Zn)

2.

Further, referring to (3.9), a straightforward calculation gives

B−1,−1 = K(b(h, 0))2 − ||b′||2 +

N∑
n=0

Ann(knbn)
2,

B−1,n = Bn,−1 = 0 (n = 0, . . . , N),

and so B is also diagonal, as before. Therefore the system (3.10) reduces to N + 2
decoupled equations for φ−1, . . . , φN in the case where the depth h is constant and
the equations (3.22) occurring in the earlier approximation also apply here, together
with an additional equation for the new mode which is

∇2
hφ−1 − k2

−1φ−1 = 0, k−1 = {−B−1,−1/A−1,−1}1/2. (3.24)

It can be shown that

k2
−1 =

‖b′‖2 − K(b(h, 0))2 −
N∑

n=0

b2
nk

2
nAnn

‖b‖2 −
N∑

n=0

b2
nAnn

=

∞∑
N+1

b2
nk

2
nAnn

∞∑
N+1

b2
nAnn

,

from which it is immediate that not only is k−1 real, but that k−1 > kN+1. From this it
is clear that the sloping-bottom mode contributes non-propagating effects in regions
where the bed is flat. Furthermore, in regions where h is a constant, the sloping-bottom
mode decays more rapidly than any of the wave modes that have been included in
the approximation. This fact gives weight to the view that the sloping-bottom mode
compensates for all the wave modes that have been omitted.

It should be noted here that this implementation of a sloping-bottom term differs
from the one used by Athanassoulis & Belibassakis (1999). In the earlier work, the
sloping-bottom mode was set to be identically zero in regions of constant depth. One
of our aims in this paper is to show how allowing the bed mode to contribute a
decaying term in such regions serves to compensate for the evanescent modes not
included in the multi-mode expansion.

The remaining new terms required to form the coefficients in (3.11) are obtained as
follows. First, recalling that Dmn = (Zm,

�

Zn) and using (Z−1, Zn) = 0 for n = 0, . . . , N
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we readily find that

D−1,−1 = (b,
�

b) −
N∑

n=0

bn{(b,
�

Zn) + (
�

b, Zn)} +

N∑
m=0

N∑
n=0

bmbnDmn,

D−1,n = (b,
�

Zn) −
N∑

m=0

bmDmn (n = 0, . . . , N),

Dn,−1 = −D−1,n − [Z−1]z=−h.

Finally,

C−1,−1 = ||
�

b||2 −
N∑

n=0

{
2bn(

�

b,
�

Zn) + 2
�

bn(
�

b, Zn) − Ann

�

b
2

n

}
,

+

N∑
m=0

N∑
n=0

bn{bmCmn + 2
�

bmDmn},

C−1,n = Cn,−1 = (
�

b,
�

Zn) −
N∑

m=0

{bmCmn +
�

bmDmn} (n = 0, . . . , N).

We note that, with h fixed,

b(h, z) =

∞∑
n=0

bnZn,

the sum converging to b at each z ∈ (−h, 0], and therefore

Z−1(h, z) =

∞∑
n=N+1

bnZn(h, z),

again with pointwise convergence for z ∈ (−h, 0]. The significance of the mode Z−1

thus reduces with increasing N , as expected. However, the purpose of the mode is to
ensure good approximations for small values of N , as recognized by Athanassoulis &
Belibassakis (1999) and confirmed below.

It remains to choose b. One possibility is to use the Athanassoulis & Belibassakis
(1999) bed mode function b(h, z) = z3 + hz2 (on appealing to scale-invariance to
remove a factor of h2 from the expression in equation (2.10)), but the linear function

b(h, z) = 1 + Kz

satisfies the assumed conditions, has the merit of simplicity and is such that

b′′ ≡ 0,
�

b ≡ 0, b′(−h, h) = K, ||b||2 = {1 − (1 − Kh)3}/3K,

bn = −K
/(

k2
nAnn

)
,

�

bn = 2KDnn

/(
k2

nA2
nn

)
, (b,

�

Zn) = bn − (1 − Kh),

�

bn having been determined by using formulae given in the Appendix. These expressions
enable the new components defined above to be evaluated using the quantities arising
in the earlier approximation and therefore the computational cost of using the
extended expansion set is virtually negligible.

We note that the counterpart of the reduction of (3.11) to (3.19) can be contrived
for the extended approximating set, but it is a comparatively unwieldy construction.
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4. Numerical experiments
Our aim in this section is to examine numerical results with particular regard to the

importance of the bed slope term and the validity of the new approximation (3.12).
For this purpose we follow previous authors by considering a class of two-dimensional
scattering problems in which the varying topography is confined to a bounded interval.
Thus, the motion is assumed to be independent of y and the bedform such that h(x)
is continuous, has a piecewise continuous derivative and satisfies

h(x) =

{
h0 (x < 0),
h1 (x > �),

where � > 0, h0 and h1 being constants.
It is efficient to describe the formulation of the scattering problem with the bed

mode included. Specializing to the wave mode only approximation and to the equation
(3.19) is a simple matter. Referring to (3.22) and (3.24) we take the approximation
(3.1) to φ in the forms

ϕ(x, z) =
{
A(0)eik(0)x + B (0)e−ik(0)x

}
Z0(h0, z)

+

N∑
n=1

B (0)
n ek

(0)
n xZn(h0, z) + B

(0)
−1e

k
(0)
−1xZ−1(h0, z) (x < 0) (4.1)

and

ϕ(x, z) =
{
A(1)eik(1)(�−x) + B (1)e−ik(1)(�−x)

}
Z0(h1, z)

+

N∑
n=1

B (1)
n ek

(1)
n (�−x)Zn(h1, z) + B

(1)
−1e

k
(1)
−1(�−x)Z−1(h1, z) (x > �). (4.2)

Here k(i) and k(i)
n refer to the roots of (2.7) and (2.9), respectively, with h = hi , and

the superscripts attached to the bed mode exponent k−1 (defined in (3.24)) have the
corresponding meaning.

The amplitudes A(0) and A(1) of the incident propagating waves from the left and
right, respectively, are considered to be assigned and the remaining amplitudes are
to be determined as part of the solution process. The exact solution of the problem
in these two domains is given by setting B

(0)
−1 = B

(1)
−1 = 0 and letting N → ∞. In the

approximation, however, we retain B
(0)
−1 and B

(1)
−1 and determine them along with the

other evanescent mode amplitudes as part of the solution process. The bed mode
terms in the approximations (4.1) and (4.2) can therefore be regarded as compensating
for the truncation of the full infinite set of evanescent modes.

This is an appropriate point to note that Athanassoulis & Belibassakis (1999) used
the sloping-bottom mode in a different way. By devising boundary conditions for
the mode at x = 0 and x = �, they confined its effect to the domain on which the
topography is varying. Although it has no direct role to play outside the interval
[0, �] in terms of improving the approximation to the bed condition, we allow it to
continue smoothly into the flat-bed regions where it contributes to the solution in the
form of a ‘truncation mode’, as we noted above.

Boundary conditions for the solution in 0 < x < � can be deduced from (4.1) and
(4.2). Referring to the notation of (3.1), extended to include the bed mode, we have

Φ(0−) = (0, A(0), 0, . . . , 0)T +
(
B

(0)
−1, B

(0), B
(0)
1 , . . . , B

(0)
N

)T ≡ A0 + B0,

Φ(�+) = (0, A(1), 0, . . . , 0)T +
(
B

(1)
−1, B

(1), B
(1)
1 , . . . , B

(1)
N

)T ≡ A1 + B1,
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dΦ

dx
(0−) = −K(0){A0 − B0}, dΦ

dx
(�+) = K(1){A1 − B1},

where K(i) = diag(k(i)
−1, −ik(i), k

(i)
1 , . . . , k

(i)
N ) is an (N+2)×(N+2) matrix, since M = −1.

If we now use the transformation Φ = S(h)Ψ , noting that dh/dx = 0 for x < 0 and
x > �, and the continuity of the elements of Ψ and their derivatives we obtain

dΨ

dx
(0+) − K(0)Ψ (0+) = −2S−1(h0)K

(0) A0,
dΨ

dx
(�−) + K(1)Ψ (�−) = 2S−1(h1)K

(1) A1,

(4.3)
which are the required boundary conditions, and

dΨ

dx
(0+) + K(0)Ψ (0+) = 2S−1(h0)K

(0) B0,
dΨ

dx
(�−) − K(1)Ψ (�−) = −2S−1(h1)K

(1) B1,

(4.4)
which recover B0 and B1 once the solution for Ψ in 0 < x < � is known.

To complete the structural part of the solution process, we write (3.11) as the
first-order system

X ′ =

⎛⎝ 0 A−1(h)

C(h)

(
dh

dx

)2

− B(h) 0

⎞⎠ X, X =

(
Ψ

A(h)
dΨ

dx

)
, (4.5)

where X is vector of length 2(N + 2), (4.3) as

Q−
0 X(0+) = −2S−1(h0)K

(0) A0, Q+
1 X(�−) = −2S−1(h1)K

(1) A1, (4.6)

and (4.4) as

Q+
0 X(0+) = −2S−1(h0)K

(0) B0, Q−
1 X(�−) = −2S−1(h1)K

(1) B1, (4.7)

in which

Q
±
i = (±K(i) A−1(hi))

is an (N + 2) × 2(N + 2) matrix.
Finally, if X (j ) (j = 1, . . . , 2(N + 2)) denote linearly independent solutions of (4.5),

obtained by solving initial-value problems, then the general solution is

X(x) = X s(x)C, X s = (X (1), . . . , X2(N+2))

where C is a constant vector of length 2(N + 2). Using (4.6) and (4.7) in turn, we
obtain (

Q−
0 X s(0)

Q+
1 X s(�)

)
C = 2

(
−S−1(h0)K

(0) 0
0 S−1(h1)K

(1)

)(
A0

A1

)
and (

Q+
0 X s(0)

Q−
1 X s(�)

)
C = 2

(
S−1(h0)K

(0) 0
0 −S−1(h1)K

(1)

) (
B0

B1

)
.

Eliminating C gives a relationship between (A0 A1)
T and (B0 B1)

T , which includes(
B (0)

B (1)

)
= S

(
A(0)

A(1)

)
, S =

(
R0 T1

T0 R1

)
,

where S is the standard scattering matrix. Thus R0 (R1) and T0 (T1) are the complex
amplitudes of the reflected and transmitted waves generated by a wave of unit
amplitude from the left (right).
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Figure 1. Reflected amplitudes computed with the inclusion of a sloping-bottom mode, that
is M = −1. Results are given for N = 1 and N = 2 for each of the approximations (3.11) and
(3.12). The solid line with circles is included for comparison and shows the ‘full linear’ solution
computed by R. Porter using the method of Porter & Porter (2000).

We remark here on the determination of the transformation matrix S. In the first
example below, Kh takes values between 0.5 and 1 and in the second illustration
0.81 < Kh < 2.45, so S is required only in the interval 0.5 � Kh < 2.45 in what
follows. As noted previously, an initial condition is required to determine S and we
choose to set it equal to the identity matrix at some value of Kh, using a simple
numerical method to approximate it for the remaining required values of Kh. A key
point to be emphasized is that, for fixed M and N , the same S may be used in both of
the following illustrations. Furthermore, the values of S determined could also be used
for yet more bed shapes, including those involving three-dimensional topography, see,
for example, Belibassakis, Athanassoulis & Gerostathis (2001), provided that Kh is
in the range mentioned above.

4.1. A symmetric elevation

We consider the test problem of a symmetric elevation in an otherwise flat bed by
taking

Kh(x) = 2(x/�)2 − 2(x/�) + 1

for 0 � x � �. This corresponds to a hump whose maximum height occupies half the
still-water depth and the test problem thus defined has been considered previously by
Porter & Staziker (1995).

In figure 1 we show approximations to |R0| for an extended range of K�, and
examine the effect both of varying N from 1 to 2 and of making the mild-slope
approximation used to derive equation (3.12) from (3.11). For most values of K�

all five versions of |R0| are indistinguishable to the eye. For small values of K�

some differences are apparent, but even here the effect of making the mild-slope
approximation is not visible to the eye, for the solid and broken lines lie almost on
top of each other and the dotted and ‘dash-dot’ lines are also near-identical. We note
that small K� corresponds to steep bed slopes and in this case larger values of N are
required to resolve the solution.

In order that finer distinctions may be made, the next two figures are concerned
with the reflected amplitude for a more restricted range of K� than was the case in
figure 1. Figures 2 and 3 show |R0| plotted against K�, with attention focused on the
largest local maximum of |R0|.

Figure 2 shows approximations to the reflected amplitude computed without the
inclusion of a sloping-bottom mode. Solid curves with accents were found via
numerical solutions of (3.11), and broken lines imply that (3.12) has been used instead.
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Figure 2. Reflected amplitudes computed without the inclusion of a sloping-bottom mode. A
solid line with �, 1 evanescent mode; �, 5 evanescent modes; ∇, 10 evanescent modes; �, 15
evanescent modes. Broken lines indicate the effect of removing C(h) from (3.11). The solid line
with no symbols is included for comparison and shows the ‘full linear’ solution computed by
R. Porter using the method of Porter & Porter (2000).
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Figure 3. Reflected amplitudes computed with the inclusion of a sloping-bottom mode. A
solid line with �, 1 evanescent mode; �, 2 evanescent modes; ∇, 3 evanescent modes. Broken
lines indicate the effect of removing C(h) from (3.11). The solid line with no symbols shows the
‘full linear’ solution computed by R. Porter using the method of Porter & Porter (2000). The
excellent agreement of certain results means that not all curves described here are discernible
to the eye.

The symbols indicate how many evanescent modes were used as follows: circles – 1
evanescent mode, upward pointing triangles – 5 evanescent modes, downward pointing
triangles – 10 evanescent modes and squares – 15 evanescent modes. The solid curve
with no symbols was computed using the method of Porter & Porter (2000) and shows
the solution obtained from a solution of the full problem (2.1). We note in passing
that the current example was not considered in Porter & Porter (2000), but that R.
Porter has used the method described in that paper for our comparison. Convergence
of the current method is evident, and it is notable that the mild-slope process of
removing the term in (∇hh)2 is least detrimental when the approximation is most
accurate. In other words, we have found that removing the term involving (∇hh)2 only
affects results by an amount of the same order as the error already present in (3.11).

Figure 3 is similar to figure 2 except that solutions to (3.11) and (3.12) were
obtained with the inclusion of the sloping-bottom mode, with b(z) = 1 + Kz. Fewer
evanescent modes were necessary when compared with the results considered in
figure 2. Circles again correspond to the inclusion of 1 evanescent mode, but now the
upward and downward pointing triangles correspond to 2 and 3 evanescent modes,
respectively. Broken lines, found via (3.11) with C(h) omitted, are hard to see, for
they lie almost directly on their solid line counterparts.
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Figure 4. Vertical cross-section showing contours of Im(ϕ) in the case where M = −1 and
N = 1 for the Athanassoulis & Belibassakis test problem.
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Figure 5. Vertical cross-section showing the absolute value of the change in ϕ when C(h) is
removed from (3.11). Here N = 1 and M = −1.

4.2. An underwater shoal

Athanassoulis & Belibassakis (1999) considered the following case of an underwater
shoal with bottom corrugations. We take

h = 1
2

(
h0 +h1 +(h1 −h0) tanh

(
3π

(x

�
− 1

2

)))
−0.67exp

(
− 1

20
(x − 12.5)2

)
cos(x −12.5),

an expression which corrects a sign error in equation (6.3) of Athanassoulis &
Belibassakis. For ease of comparison with the earlier paper we give the various
parameters in dimensional form: h0 = 6 m, h1 = 2 m, � = 20m, σ = 2 s−1 so that
K = 0.41 m−1, to 2 decimal places.

Our results are in excellent agreement with those of Athanassoulis & Belibassakis,
and contours indistinguishable from those in their figure 7 are obtained with only
one evanescent mode, when the sloping-bottom mode is also included. Figure 4 shows
contours of Im(ϕ) and should be compared with figure 7(a) of Athanassoulis &
Belibassakis. In accordance with Athanassoulis & Belibassakis, we have not labelled
our contours, but note that Im(ϕ) varies between −6.5 and 6.9, to 1 decimal place.
Figure 4 was computed using equation (3.11), but, as discussed in the next paragraph,
there is no change discernable to the eye if (3.12) is used instead. (There is similar
excellent agreement between Re(ϕ) and figure 7(b) of Athanassoulis & Belibassakis.)

Figure 5 corresponds to the inclusion of one evanescent mode and the sloping-
bottom mode and shows the effect of removing C(h) from (3.11). Contours are shown
of the absolute value of the change in ϕ, the approximation to φ, resulting in the
removal of C(h). We see that, when the approximation is close to the true solution,
the removal of C(h) results in only a very small change in ϕ.



438 P. G. Chamberlain and D. Porter

0 2 4 6 8 10 12 14 16 18 20
–6

–4

–2

0

2

4

6

8

10

12

14

(× 10–5)

Figure 6. As figure 5, but here N = 2.

Figure 6 is as figure 5, but with N = 2, and we see that with the (guaranteed)
improvement in results afforded by an increase in N , the effect of removing C(h) from
(3.11) is reduced.

5. Conclusions
The multi-mode variational approximation to wave scattering over topography,

previously derived by Massel (1993) and Porter & Staziker (1995), has been re-
examined and the differential equation system that determines the approximation
simplified by a transformation of the dependent variables. One beneficial effect of the
new system is that the expansion set used in the approximation is scale invariant and
it turns out that the transformation used, albeit for a different reason, is the only one
leading to this property. Scale invariance is practically significant as it considerably
reduces the effort required to evaluate the coefficients arising in the system. Reference
to Silva, Salles & Palacio (2002) shows the level of complexity that can arise in
calculations of this type without the benefit of scale invariance and the use of an
indirect evaluation strategy such as that devised here.

It is important to recall that the matrix S which defines the transformation is a
function of Kh and can therefore be calculated and stored before a specific bed shape
or angular wave frequency have been decided upon. It follows that the transformation
is no more expensive to apply in fully three-dimensional problems than in the test
problems considered in this paper. Belibassakis et al. (2001) have given results derived
from a multi-mode decomposition in a three dimensional problem, and it is likely
that results found via our equation (3.12) will be very similar to the results that they
obtained. We note at this point that Belibassakis & Athanassoulis (2004) have also
used a multi-mode expansion with a bed-sloping mode in another three-dimensional
context, to determine a Green’s function, in the case where the topography consists of
parallel contours. The three-dimensional nature of the problem in this case arises from
the point-source nature of the Green’s function, rather than from the topographical
features.

The transformation of the system does not change the approximation, it simply
recasts it in a simpler and more convenient form. However, the new system (3.11)
does suggests a further simplification, obtained by discarding the square of the bed
slope (∇hh)2. The net effect of these various steps is the differential equation system
given in (3.12), which may be contrasted with the original system (2.4). Since (3.12) is
independent of ∇hh it applies where the bed slope is discontinuous, removing the need
that arises in the original form of the approximation to assemble the solution in a
piecemeal fashion and applying jump conditions. Numerical experiments, a selection
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of which are described earlier, suggest that the final reduction to (3.12) does not
increase the order of the error in the approximation.

We have also examined the inclusion of a sloping-bottom mode, for which the
system (3.12) still applies when the approximation is reduced to its simplest form.
By making an appropriate choice of the new mode, no additional terms have
to be calculated to evaluate the extended approximation. Although this step was
motivated by the work of Athanassoulis & Belibassakis (1999), who improved on
the approximations of Massel (1993) and Porter & Staziker (1995), we have used the
sloping-bottom mode in a different way by allowing its effect to penetrate regions
where the bed is flat. There it has the effect of a ‘truncation term’, compensating for
the modes that are excluded from the approximation.

We have found in numerical calculations that the scattering properties of demanding
bedforms are determined accurately by a three-mode approximation: the sloping-
bottom mode; the propagating wave mode; and a single evanescent mode. Overall, the
approximation that we have derived provides a practical and relatively straightforward
way of estimating linear scattering over uneven beds. We have found that the optimal
approach is to incorporate a sloping-bottom mode together with the mild-slope
reduction to equation (3.12); the neglect of (∇hh)2 incurs least error when the
approximation is most accurate and the inclusion of a sloping-bottom mode improves
accuracy. It seems unlikely that a simpler method can be formulated that has the
same accuracy.

Finally, we comment that (3.12) is likely to be attractive to coastal engineers,
for there is no requirement to know (or approximate) derivatives of h. This fact is
significant, for example, if h has to be interpolated from field data.

The authors are grateful to Dr Richard Porter, of the University of Bristol, for
supplying results used for comparison in figures 1, 2 and 3.

Appendix
Our objective here is to evaluate the matrix elements required in (3.7) and (3.11)

with Zn given by (3.13). We recall that

Amn = Annδmn, Dmn = (Zm,
�

Zn), Cmn = (
�

Zm,
�

Zn),

Zn being defined in (3.13); Ann is given in (3.14).
Now since Z′′

n + k2
nZn = 0 and kn = kn(h), we have

�

Z
′′
n + k2

n

�

Zn + 2kn

�

knZn = 0, (A 1)

and we note that

[Zn]z=−h = 1, [
�

Zn]z=−h = 0, [
�

Z
′
n]z=−h = −k2

n. (A 2)

Using these values and the fact that Zn and
�

Zn satisfy the free-surface condition, we
obtain

(Z′′
m,

�

Zn) − (Zm,
�

Z
′′
n) = [Z′

m

�

Zn − Zm

�

Z
′
n]

z=0
z=−h = −k2

n,

which with (A 1) gives the identity(
k2

m − k2
n

)
(Zm,

�

Zn) − 2kn

�

kn(Zm, Zn) = k2
n. (A 3)

We therefore have

Dmn = k2
n

/(
k2

m − k2
n

)
(m 	= n). (A 4)
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With m = n, (A 3) shows that

2
�

knAnn = −kn, (A 5)

giving an expression for
�

kn. Further, differentiating ||Zn||2, we see that
�

Ann = 2Dnn + 1, (A 6)

which combines with (A 5) to yield

kn

�

Ann = 2knDnn − 2
�

knAnn. (A 7)

By direct calculation,

2
�

Ann = 1 + sin(2knh){1 + cos(2knh)}/4knAnn, (A 8)

and (A 6) now gives

Dnn = {sin(4knh) − 4knh}/32knAnn. (A 9)

To evaluate the elements of C, we follow the same strategy and first use (A 2) to
give

(
�

Z
′′
m,

�

Zn) − (
�

Zm,
�

Z
′′
n) = [

�

Z
′
m

�

Zn −
�

Zm

�

Z
′
n]

z=0
z=−h = 0.

Then (A 1) implies that(
k2

m − k2
n

)
Cmn + 2km

�

kmDmn − 2kn

�

knDnm = 0

whence

Cmn = (kmkn)
2
(
k2

m − k2
n

)−2{A−1
mm + A−1

nn

}
(m 	= n). (A 10)

A similar procedure gives Cnn. Evaluating (
�

Z
′′
n, Z̈n) − (

�

Zn, Z̈
′′
n), combining the result

with the derivative of (A 6) and using preceding formulae, we find that

6Cnn = 2k2
nAnn + {3 sin(4knh) − 4 sin3(2knh) − 12knh}/32knA2

nn. (A 11)
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